Series feature aggregation for content-based image retrieval
نویسندگان
چکیده
Feature aggregation is a critical technique in content-based image retrieval systems that employ multiple visual features to characterize image content. One problem in feature aggregation is that image similarity in different feature spaces can not be directly comparable with each other. To address this problem, a new feature aggregation approach, series feature aggregation (SFA), is proposed in this paper. In contrast to merging incomparable feature distances in different feature spaces to get aggregated image similarity in the conventional feature aggregation approach, the series feature aggregation directly deal with images in each feature space to avoid comparing different feature distances. SFA is effectively filtering out irrelevant images using individual features in each stage and the remaining images are images that collectively described by all features. Experiments, conducted with IAPR TC-12 benchmark image collection (ImageCLEF2006) that contains over 20,000 photographic images and defined queries, have shown that SFA can outperform the parallel feature aggregation and linear distance combination schemes. Furthermore, SFA is able to retrieve more relevant images in top ranked outputs that brings better user experience in finding more relevant images quickly.
منابع مشابه
A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملEfficient Content-based Image Retrieval Using Weighted Feature Aggregation Scheme
This paper presents a content-based image retrieval system for aggregation and combination of different image features. Feature aggregation is important technique in general content-based image retrieval systems that employ multiple visual features to characterize image content. We introduced and evaluated linear combination to fuse different features. The most important step in the feature agg...
متن کاملContent Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram
Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a database. In medical applications, CBIR is a tool used by physicians to compare the previous and current medical images associated with patients pathological conditions. As the volume of pictorial information stored in medical image databases is in progress, efficient image indexing and retri...
متن کاملQDFA: Query-Dependent Feature Aggregation for Medical Image Retrieval
We propose a novel query-dependent feature aggregation (QDFA) method for medical image retrieval. The QDFA method can learn an optimal feature aggregation function for a multi-example query, which takes into account multiple features and multiple examples with different importance. The experiments demonstrate that the QDFA method outperforms three other feature aggregation methods. key words: C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Electrical Engineering
دوره 36 شماره
صفحات -
تاریخ انتشار 2010